Excitations in the dilute A_{L} lattice model: E_{6}, E_{7} and E_{8} mass spectra ${ }^{\star}$

M.T. Batchelor ${ }^{1, a}$ and K.A. Seaton ${ }^{2}$
${ }^{1}$ Department of Mathematics, School of Mathematical Sciences, Australian National University, Canberra ACT 0200, Australia
${ }^{2}$ School of Mathematics, La Trobe University, Bundoora VIC 3083, Australia

Received: 17 February 1998 / Accepted: 30 April 1998

Abstract

On the basis of features observed in the exact perturbation approach solution for the eigenspectrum of the dilute A_{3} model, we propose expressions for excitations in the dilute A_{4} and A_{6} models. Principally, we require that these expressions satisfy the appropriate inversion relations. We demonstrate that they give the expected E_{7} and E_{6} mass spectra, and universal amplitudes, and agree with numerical expressions for the eigenvalues.

PACS. 05.70.Jk Critical point phenomena - 64.60.Cn Statistical mechanics of model systems - 75.10.Jm Quantized spin models

1 Introduction

The dilute A_{L} model is an exactly solvable, restricted solid-on-solid model defined on the square lattice. At criticality, the model can be constructed $[1,2]$ from the dilute $O(n)$ loop model $[3,4]$. Each site of the lattice can take one of L possible (height) values, subject to the restriction that neighbouring sites of the lattice either have the same height, or differ by ± 1. Most importantly, the model can also be solved away from criticality. The off-critical Boltzmann weights of the allowed height configurations of an elementary face of the lattice are parametrised in terms of elliptic theta functions [1]. The interpretation of the elliptic nome p differs according to whether L is even or odd. In particular, for L odd the up-down symmetry of the Boltzmann weights is broken away from criticality. For $L=3$ the elliptic nome plays the role of magnetic field. Moreover, the dilute A_{3} model provides, in one of its regimes, an integrable lattice realisation of the E_{8} Ising model, being in the same universality class as the two-dimensional Ising model in a magnetic field.

The calculation of the various off-critical thermodynamic properties of the model have verified this correspondence. The singular part of the bulk free energy of the dilute A_{3} model in the appropriate regime gives the magnetic Ising exponent $\delta=15$ [1], which also follows from the calculation of the local height probability [5]. The expected Ising magnetic surface exponent $\delta_{s}=-\frac{15}{7}$ follows from the excess surface free energy [6]. Moreover

[^0]the E_{8} mass spectrum,
\[

$$
\begin{array}{ll}
m_{2}=2 \cos \frac{\pi}{5} & =1.618033 \ldots \\
m_{3}=2 \cos \frac{\pi}{30} & =1.989043 \ldots \\
m_{4}=4 \cos \frac{\pi}{5} \cos \frac{7 \pi}{30} & =2.404867 \ldots \\
m_{5}=4 \cos \frac{\pi}{5} \cos \frac{2 \pi}{15} & =2.956295 \ldots \tag{1}\\
m_{6}=4 \cos \frac{\pi}{5} \cos \frac{\pi}{30} & =3.218340 \ldots \\
m_{7}=8 \cos \frac{\pi}{5} \cos \frac{7 \pi}{30} & =3.891156 \ldots \\
m_{8}=8 \cos ^{2} \frac{\pi}{5} \cos \frac{2 \pi}{15} & =4.783386 \ldots
\end{array}
$$
\]

predicted by Zamolodchikov [7,8] for the Ising model in a magnetic field is seen in the single particle excitation spectrum [9-12]. Here the masses are normalized such that $m_{1}=1$. They coincide with the components of the Perron-Frobenius vector of the Cartan matrix of the Lie algebra E_{8}.

In this paper we consider off-critical excitations in the dilute A_{4} and A_{6} models, which are expected to be related to the E_{7} and E_{6} scattering theories. The E_{6} masses are
(see, e.g., $[13-15]$ and references therein)

$$
\begin{align*}
& m_{1}=m_{\overline{1}}=1 \\
& m_{2}=2 \cos \frac{\pi}{4} \quad=1.414213 \ldots \\
& m_{3}=m_{\overline{3}}=2 \cos \frac{\pi}{12}=1.931851 \ldots \tag{2}\\
& m_{4}=4 \cos \frac{\pi}{4} \cos \frac{\pi}{12}=2.732050 \ldots
\end{align*}
$$

The E_{7} masses, with $m_{1}=1$, are [13-15]

$$
\begin{array}{ll}
m_{2}=2 \cos \frac{5 \pi}{18} & =1.285575 \ldots \\
m_{3}=2 \cos \frac{\pi}{9} & =1.879385 \ldots \\
m_{4}=2 \cos \frac{\pi}{18} & =1.969615 \ldots \\
m_{5}=4 \cos \frac{\pi}{18} \cos \frac{5 \pi}{18} & =2.532088 \ldots \tag{3}\\
m_{6}=4 \cos \frac{\pi}{9} \cos \frac{2 \pi}{9} & =2.879385 \ldots \\
m_{7}=4 \cos \frac{\pi}{18} \cos \frac{\pi}{9} & =3.701666 \ldots
\end{array}
$$

Our approach begins in the next two sections by considering the inversion relations that hold for the off-critical dilute A_{L} models, how our solution [12] satisfies them in the case $L=3$, and how the E_{8} structure manifests itself within the solution. In the subsequent sections we propose solutions for A_{4} and A_{6} and demonstrate the expected E_{7} and E_{6} mass spectra. We conclude with some numerical evidence and discussion.

2 Inversion relations

The eigenvalues of the row transfer matrix of the dilute A_{L} model, defined on a periodic strip of width N, where we take N even, are [9]

$$
\begin{align*}
\Lambda(u) & =\omega\left[\frac{\vartheta_{1}(2 \lambda-u) \vartheta_{1}(3 \lambda-u)}{\vartheta_{1}(2 \lambda) \vartheta_{1}(3 \lambda)}\right]^{N} \prod_{j=1}^{N} \frac{\vartheta_{1}\left(u-u_{j}+\lambda\right)}{\vartheta_{1}\left(u-u_{j}-\lambda\right)} \\
& +\left[\frac{\vartheta_{1}(u) \vartheta_{1}(3 \lambda-u)}{\vartheta_{1}(2 \lambda) \vartheta_{1}(3 \lambda)}\right]^{N} \\
& \times \prod_{j=1}^{N} \frac{\vartheta_{1}\left(u-u_{j}\right) \vartheta_{1}\left(u-u_{j}-3 \lambda\right)}{\vartheta_{1}\left(u-u_{j}-\lambda\right) \vartheta_{1}\left(u-u_{j}-2 \lambda\right)} \\
& +\frac{1}{\omega}\left[\frac{\vartheta_{1}(u) \vartheta_{1}(\lambda-u)}{\vartheta_{1}(2 \lambda) \vartheta_{1}(3 \lambda)}\right]^{N} \prod_{j=1}^{N} \frac{\vartheta_{1}\left(u-u_{j}-4 \lambda\right)}{\vartheta_{1}\left(u-u_{j}-2 \lambda\right)} \tag{4}
\end{align*}
$$

where the N roots u_{j} are given by the Bethe equations

$$
\begin{align*}
& \omega\left[\frac{\vartheta_{1}\left(\lambda-u_{j}\right)}{\vartheta_{1}\left(\lambda+u_{j}\right)}\right]^{N}= \\
& \quad-\prod_{k=1}^{N} \frac{\vartheta_{1}\left(u_{j}-u_{k}-2 \lambda\right) \vartheta_{1}\left(u_{j}-u_{k}+\lambda\right)}{\vartheta_{1}\left(u_{j}-u_{k}+2 \lambda\right) \vartheta_{1}\left(u_{j}-u_{k}-\lambda\right)} \tag{5}
\end{align*}
$$

with $\omega=\exp (i \pi \ell /(L+1))$ for $\ell=1, \ldots, L$. For regime 2 , the regime to be considered, the spectral parameter u lies in the range $0<u<3 \lambda$, with $\lambda=\pi s / r$, where $s=L+2$ and $r=4(L+1)$.

The standard elliptic theta functions $\vartheta_{1}(u)=\vartheta_{1}(u, p)$ and $\vartheta_{4}(u)=\vartheta_{4}(u, p)$ of nome p are defined as

$$
\begin{align*}
& \vartheta_{1}(u)=2 p^{\frac{1}{4}} \sin u \prod_{n=1}^{\infty}\left(1-2 p^{2 n} \cos 2 u+p^{4 n}\right)\left(1-p^{2 n}\right) \\
& \vartheta_{4}(u)=\prod_{n=1}^{\infty}\left(1-2 p^{2 n-1} \cos 2 u+p^{4 n-2}\right)\left(1-p^{2 n}\right) \tag{6}
\end{align*}
$$

Also of use are the conjugate variables

$$
\begin{equation*}
w=e^{-2 \pi u / \epsilon} \quad \text { and } \quad x=e^{-\pi^{2} / r \epsilon} \tag{7}
\end{equation*}
$$

where nome $p=e^{-\epsilon}$. The relevant conjugate modulus transformations are

$$
\begin{align*}
& \vartheta_{1}(u, p)=\left(\frac{\pi}{\epsilon}\right)^{\frac{1}{2}} e^{-(u-\pi / 2)^{2} / \epsilon} E\left(w, q^{2}\right) \\
& \vartheta_{4}(u, p)=\left(\frac{\pi}{\epsilon}\right)^{\frac{1}{2}} e^{-(u-\pi / 2)^{2} / \epsilon} E\left(-w, q^{2}\right) \tag{8}
\end{align*}
$$

where $q=e^{-\pi^{2} / \epsilon}$ and

$$
\begin{equation*}
E(z, p)=\prod_{n=1}^{\infty}\left(1-p^{n-1} z\right)\left(1-p^{n} z^{-1}\right)\left(1-p^{n}\right) \tag{9}
\end{equation*}
$$

For this model, the partition function per site κ was first calculated using the inversion relation $[1,5]$

$$
\begin{align*}
\kappa(u) \kappa(u+3 \lambda)= & \frac{\vartheta_{1}(2 \lambda-u) \vartheta_{1}(3 \lambda-u)}{\vartheta_{1}^{2}(2 \lambda) \vartheta_{1}^{2}(3 \lambda)} \\
& \times \vartheta_{1}(2 \lambda+u) \vartheta_{1}(3 \lambda+u) \tag{10}
\end{align*}
$$

In this way the bulk free energy per site $f=\log \kappa$ was found to be

$$
\begin{align*}
f= & \sum_{k=1}^{\infty}\left[\frac{\left(1-w^{k}\right)\left(1-x^{6 s k} w^{-k}\right)}{k\left(1-x^{2 r k}\right)\left(1+x^{6 s k}\right)}\right. \\
& \left.\times\left(x^{4 s k}+x^{(2 r-6 s) k}\right)\left(1+x^{2 s k}\right)\right] \tag{11}
\end{align*}
$$

The same result was derived $[12,16]$ from the Bethe Ansatz solution for the groundstate eigenvalue $\Lambda_{0}(u)$.

Making use of the Poisson summation formula in the free energy (11) the leading singularity as $p \rightarrow 0$ in regime 2 is

$$
\begin{equation*}
f \sim \mathcal{A} p^{r / 3 s} \tag{12}
\end{equation*}
$$

where the amplitude \mathcal{A} is given in terms of L by

$$
\begin{equation*}
\mathcal{A}=4 \sqrt{3} \frac{\cos \left[\frac{\pi(L+6)}{6(L+2)}\right]}{\sin \left[\frac{2 \pi(L+1)}{3(L+2)}\right]} \tag{13}
\end{equation*}
$$

and we have taken the isotropic value $u=3 \lambda / 2$.
Excitations in the eigenspectrum can be considered in terms of the quantity

$$
\begin{equation*}
r_{j}(u)=\lim _{N \rightarrow \infty} \frac{\Lambda_{j}(u)}{\Lambda_{0}(u)} \tag{14}
\end{equation*}
$$

The inversion relation (10) is simply

$$
\begin{equation*}
r_{j}(u) r_{j}(u+3 \lambda)=1 \tag{15}
\end{equation*}
$$

but there is a further relation to be satisfied [12],

$$
\begin{equation*}
r_{j}(u) r_{j}(u+2 \lambda)=r_{j}(u+\lambda) \tag{16}
\end{equation*}
$$

Our approach here is not to solve the inversion relations directly, as was done, e.g., by Klümper and Zittartz for the excitation spectra of the eight-vertex model [17]. Rather, in the light of our results for the excitations of the dilute A_{3} model, we use the above inversion relations to give constraints on the Lie algebraic properties of a conjectured solution. We then test our results as best we can by numerically diagonalising the transfer matrix, and by comparison with results for E_{7} and E_{6} obtained by other methods.

3 The dilute A_{3} model and the E_{8} mass spectrum

We now summarise our results [12] for the dilute A_{3} model, obtained by the exact perturbation approach [18]. The leading excitations in a given band of eigenvalues can be written in the compact form

$$
\begin{equation*}
r_{j}(w)=w^{n(a)} \prod_{a} \frac{E\left(-x^{a} / w\right) E\left(-x^{30-a} / w\right)}{E\left(-x^{a} w\right) E\left(-x^{30-a} w\right)} \tag{17}
\end{equation*}
$$

where we have suppressed the nome x^{60} and the numbers a and $n(a)$ are given in Table 1. The E_{8} numbers a have been discussed by McCoy and Orrick for the related Hamiltonian [11]. They appear, e.g., in E_{8} scattering theory [14] and in E_{8} Lie algebraic polynomials [19]. The number $n(a)$ denotes the relevant band of eigenvalues.

Note that within a band of eigenvalues there may be more than one class of excitation. For example, in the leading band of eigenvalues there are two, which arise from a 2 -string and a 4 -string structure in the Bethe roots $[9,10]$. The expression (17) is the leading excitation for each class of eigenvalue. The last excitation within a class is also given by (17), but with positive argument in the elliptic functions.

Table 1. Parameters appearing in the eigenvalue expression (17).

j	$n(a)$	a
1	2	1,11
2	2	7,13
3	3	$2,10,12$
4	3	$6,10,14$
5	4	$3,9,11,13$
6	4	$6,8,12,14$
7	5	$4,8,10,12,14$
8	6	$5,7,9,11,13,15$

In the original variables (17) reads

$$
\begin{equation*}
r_{j}(u)=\prod_{a} \frac{\vartheta_{4}\left(\frac{a \pi}{60}-\frac{8 u}{15}\right) \vartheta_{4}\left(\frac{(30-a) \pi}{60}-\frac{8 u}{15}\right)}{\vartheta_{4}\left(\frac{a \pi}{60}+\frac{8 u}{15}\right) \vartheta_{4}\left(\frac{(30-a) \pi}{60}+\frac{8 u}{15}\right)} \tag{18}
\end{equation*}
$$

with nome $p^{8 / 15}$.
The various correlation lengths follow as

$$
\begin{equation*}
\xi_{j}^{-1}=-\log r_{j}(u) \tag{19}
\end{equation*}
$$

where we take the relevant leading eigenvalue at the isotropic point $u=3 \lambda / 2$, which for $L=3$ is $u=15 \pi / 32$.

The fundamental correlation lengths can thus be written

$$
\begin{align*}
m_{j}=\xi_{j}^{-1} & =\sum_{a} \log \frac{\vartheta_{4}\left(\frac{a \pi}{60}+\frac{\pi}{4}\right) \vartheta_{4}\left(\frac{(30-a) \pi}{60}+\frac{\pi}{4}\right)}{\vartheta_{4}\left(\frac{a \pi}{60}-\frac{\pi}{4}\right) \vartheta_{4}\left(\frac{(30-a) \pi}{60}-\frac{\pi}{4}\right)} \\
& =2 \sum_{a} \log \frac{\vartheta_{4}\left(\frac{a \pi}{60}+\frac{\pi}{4}\right)}{\vartheta_{4}\left(\frac{a \pi}{60}-\frac{\pi}{4}\right)} . \tag{20}
\end{align*}
$$

Expanding this expression in powers of p gives

$$
\begin{equation*}
m_{j} \sim 8 p^{8 / 15} \sum_{a} \sin \frac{a \pi}{30} \quad \text { as } \quad p \rightarrow 0 \tag{21}
\end{equation*}
$$

This is the formula obtained by McCoy and Orrick [11] for the Hamiltonian, from which the E_{8} masses in (1) are recovered by virtue of trig identities.

In particular,

$$
\begin{equation*}
\xi_{1}^{-1} \sim 8 p^{8 / 15}\left(\sin \frac{\pi}{30}+\sin \frac{11 \pi}{30}\right)=16 \sin \frac{\pi}{5} \cos \frac{\pi}{6} p^{8 / 15} \tag{22}
\end{equation*}
$$

We are now able to consider the universal magnetic Ising amplitude [16]. From (12, 13),

$$
\begin{equation*}
f \sim 4 \sqrt{3} \frac{\sin \frac{\pi}{5}}{\cos \frac{\pi}{30}} p^{16 / 15} \quad \text { as } \quad p \rightarrow 0 \tag{23}
\end{equation*}
$$

Combining this with (22) gives

$$
\begin{equation*}
f \xi_{1}^{2}=\frac{1}{16 \sqrt{3} \sin \frac{\pi}{5} \cos \frac{\pi}{30}}=0.061728589 \ldots \tag{24}
\end{equation*}
$$

as $p \rightarrow 0$. This is the result for the universal magnetic Ising amplitude obtained earlier by thermodynamic Bethe Ansatz calculations based on the E_{8} scattering theory [15] (see also Ref. [20] in the context of the form-factor bootstrap approach). Here it has been obtained from the lattice model.

From the outset, no assumptions were made on the E_{8} structure in the dilute A_{3} model, both in our own calculations, and in the thermodynamic Bethe Ansatz calculations $[9,11]$. We now highlight a few of the E_{8} features as a guide to our considerations of E_{7} and E_{6}.

First, each a value occurs in (17) together with its complement in (30), the Coxeter number of E_{8}, so that no integer greater than 15 appears in the lists in Table 1.

Second, the inversion relation

$$
\begin{equation*}
r_{j}(w) r_{j}\left(x^{30} w\right)=1 \tag{25}
\end{equation*}
$$

is satisfied by an expression of the form (17) for any a value. However, the stronger relation

$$
\begin{equation*}
r_{j}(w) r_{j}\left(x^{20} w\right)=r_{j}\left(x^{10} w\right) \tag{26}
\end{equation*}
$$

is satisfied if, within the set of integers, one finds not only a, where $a=1, \ldots, 9$, but also $a+10$, or equivalently its complement in $30,20-a$, by virtue of the properties

$$
\begin{equation*}
E(z, p)=E(p / z, p)=-z E\left(z^{-1}, p\right) \tag{27}
\end{equation*}
$$

The integer $a=10$ may appear alone, because the factor it contributes to $r_{j}(w)$ satisfies (26) by itself. From Table 1, the sets of integers found by the perturbative approach [12] all have these features.

Finally, we observe that the nome p cancels in (24) because of the relationship between the power of p occurring in f and in ξ_{1}. Indeed, this combination defines the hyperscaling relation between the corresponding critical exponents.

4 The dilute A_{4} model and the E_{7} mass spectrum

We now use our observations for E_{8} to arrive at a conjecture (equivalent to (17)) for the excitations of E_{7}.

The free energy expression is, from $(12,13)$,

$$
\begin{equation*}
f \sim \frac{2 \sqrt{3}}{\sin \frac{5 \pi}{18}} p^{10 / 9} \quad \text { as } \quad p \rightarrow 0 \tag{28}
\end{equation*}
$$

In order to obtain a finite expression from $f \xi_{1}^{2}$, we thus expect

$$
\begin{equation*}
\xi_{1}^{-1} \sim p^{5 / 9} \quad \text { as } \quad p \rightarrow 0 \tag{29}
\end{equation*}
$$

This power of the nome must appear in the expression equivalent to (18) for E_{7}, and is thus related to the one we must propose for $r_{j}(w)$ by the conjugate modulus transformation (8), namely

$$
\begin{equation*}
e^{-5 \epsilon / 9} \rightarrow e^{-18 \pi^{2} / 5 \epsilon}=x^{72} \tag{30}
\end{equation*}
$$

where for $L=4, x=e^{-\pi^{2} / 20 \epsilon}$.
The inversion relation in conjugate modulus form is

$$
\begin{equation*}
r_{j}(w) r_{j}\left(x^{36} w\right)=1 \tag{31}
\end{equation*}
$$

However, the Coxeter number for E_{7} is 18 , so that we expect to select our integers from $1, \ldots, 9$. We thus propose that the excitations for E_{7} take the form

$$
\begin{equation*}
r_{j}(w)=w^{n(a)} \prod_{a} \frac{E\left(-x^{2 a} / w\right) E\left(-x^{36-2 a} / w\right)}{E\left(-x^{2 a} w\right) E\left(-x^{36-2 a} w\right)} \tag{32}
\end{equation*}
$$

with nome x^{72}. The additional relation which serves to constrain the possible a values is

$$
\begin{equation*}
r_{j}(w) r_{j}\left(x^{24} w\right)=r_{j}\left(x^{12} w\right) \tag{33}
\end{equation*}
$$

This condition is satisfied if, within a set of possible integers, a appears together with $a+6$ or equivalently $12-a$, apart from $a=6$ whose contribution satisfies (33) by itself.

Written in terms of the original variables the expression (32) is

$$
\begin{equation*}
r_{j}(u)=\prod_{a} \frac{\vartheta_{4}\left(\frac{a \pi}{36}-\frac{5 u}{9}\right) \vartheta_{4}\left(\frac{(18-a) \pi}{36}-\frac{5 u}{9}\right)}{\vartheta_{4}\left(\frac{a \pi}{36}+\frac{5 u}{9}\right) \vartheta_{4}\left(\frac{(18-a) \pi}{36}+\frac{5 u}{9}\right)} \tag{34}
\end{equation*}
$$

with nome $p^{5 / 9}$. Taking the isotropic value $u=9 \pi / 20$ we obtain

$$
\begin{equation*}
m_{j}=\xi_{j}^{-1}=2 \sum_{a} \log \frac{\vartheta_{4}\left(\frac{a \pi}{36}+\frac{\pi}{4}\right)}{\vartheta_{4}\left(\frac{a \pi}{36}-\frac{\pi}{4}\right)} \tag{35}
\end{equation*}
$$

for the masses, and so

$$
\begin{equation*}
m_{j} \sim 8 p^{5 / 9} \sum_{a} \sin \frac{a \pi}{18} \quad \text { as } \quad p \rightarrow 0 \tag{36}
\end{equation*}
$$

We now turn to the sets of integers associated with E_{7} in the context of Lie algebraic polynomials [19] which form the first six rows of the third column of Table 2. Clearly these integers satisfy the constraints described above as being placed upon them by (33). Together with the last row, they are also to be found within the table given for E_{7} scattering in [14].

Table 2. Parameters appearing in the eigenvalue expression (32).

j	$n(a)$	a
1	1	6
2	2	1,7
3	2	4,8
4	2	5,7
5	3	$2,6,8$
6	3	$4,6,8$
7	4	$3,5,7,9$

Applying trig identities to the sum in (36) with these sets of integers gives

$$
\begin{align*}
\sum_{a=6} \sin \frac{a \pi}{18} & =\sqrt{3} / 2 \\
\sum_{a=1,7} \sin \frac{a \pi}{18} & =\sqrt{3} \cos \frac{5 \pi}{18} \\
\sum_{a=4,8} \sin \frac{a \pi}{18} & =\sqrt{3} \cos \frac{\pi}{9} \\
\sum_{a=5,7} \sin \frac{a \pi}{18} & =\sqrt{3} \cos \frac{\pi}{18} \tag{37}\\
\sum_{a=2,6,8} \sin \frac{a \pi}{18} & =2 \sqrt{3} \cos \frac{\pi}{18} \cos \frac{5 \pi}{18} \\
\sum_{a=4,6,8} \sin \frac{a \pi}{18} & =2 \sqrt{3} \cos \frac{\pi}{9} \cos \frac{2 \pi}{9} \\
\sum_{a=3,5,7,9} \sin \frac{a \pi}{18} & =2 \sqrt{3} \cos \frac{\pi}{18} \cos \frac{\pi}{9}
\end{align*}
$$

which, apart from normalisation, correspond to m_{1}, \ldots, m_{7} of $(3)^{1}$. As another piece of evidence for our identification of $a=6$ with m_{1}, from which the others follow, we consider the amplitude

$$
\begin{equation*}
f \xi_{1}^{2}=\frac{2 \sqrt{3}}{\sin \frac{5 \pi}{18}} \frac{1}{\left(8 \sin \frac{\pi}{3}\right)^{2}}=\frac{1}{8 \sqrt{3} \cos \frac{2 \pi}{9}} \tag{38}
\end{equation*}
$$

as $p \rightarrow 0$. This is in agreement with the E_{7} thermodynamic Bethe Ansatz result [15].

[^1]
5 The dilute A_{6} model and the E_{6} mass spectrum

The free energy expression for the dilute A_{6} model is, again from $(12,13)$,

$$
\begin{equation*}
f \sim \frac{2 \sqrt{6}}{\cos \frac{\pi}{12}} p^{7 / 6} \quad \text { as } \quad p \rightarrow 0 \tag{39}
\end{equation*}
$$

and so we expect

$$
\begin{equation*}
\xi_{1}^{-1} \sim p^{7 / 12} \quad \text { as } \quad p \rightarrow 0 \tag{40}
\end{equation*}
$$

This power of the nome must appear in the expression equivalent to (18) for E_{6}, and thus prescribes the nome of the expression we propose for $r_{j}(w)$, because in the conjugate modulus transformation (8),

$$
\begin{equation*}
e^{-7 \epsilon / 12} \rightarrow e^{-24 \pi^{2} / 7 \epsilon}=x^{96} \tag{41}
\end{equation*}
$$

where in the case $L=6, x=e^{-\pi^{2} / 28 \epsilon}$. The inversion relation in conjugate modulus form is

$$
\begin{equation*}
r_{j}(w) r_{j}\left(x^{48} w\right)=1 \tag{42}
\end{equation*}
$$

Finally, the Coxeter number for E_{6} is 12 , so that we expect to select our integers from $1, \ldots, 6$. We thus propose that the excitations for E_{6} take the form

$$
\begin{equation*}
r_{j}(w)=w^{n(a)} \prod_{a} \frac{E\left(-x^{4 a} / w\right) E\left(-x^{48-4 a} / w\right)}{E\left(-x^{4 a} w\right) E\left(-x^{48-4 a} w\right)} \tag{43}
\end{equation*}
$$

with nome x^{96}.
The additional relation which serves to constrain the possible a values is

$$
\begin{equation*}
r_{j}(w) r_{j}\left(x^{32} w\right)=r_{j}\left(x^{16} w\right) \tag{44}
\end{equation*}
$$

Thus within any set of possible integers, a must appear together with $a+4$ or equivalently $8-a$, apart from $a=4$ which satisfies (44) by itself. Written in terms of the original variables the expression (43) is

$$
\begin{equation*}
r_{j}(u)=\prod_{a} \frac{\vartheta_{4}\left(\frac{a \pi}{24}-\frac{7 u}{12}\right) \vartheta_{4}\left(\frac{(12-a) \pi}{24}-\frac{7 u}{12}\right)}{\vartheta_{4}\left(\frac{a \pi}{24}+\frac{7 u}{12}\right) \vartheta_{4}\left(\frac{(12-a) \pi}{24}+\frac{7 u}{12}\right)} \tag{45}
\end{equation*}
$$

with nome $p^{7 / 12}$. Taking the isotropic value $u=3 \pi / 7$ we obtain

$$
\begin{equation*}
m_{j}=\xi_{j}^{-1}=2 \sum_{a} \log \frac{\vartheta_{4}\left(\frac{a \pi}{24}+\frac{\pi}{4}\right)}{\vartheta_{4}\left(\frac{a \pi}{24}-\frac{\pi}{4}\right)} \tag{46}
\end{equation*}
$$

for the masses. Thus

$$
\begin{equation*}
m_{j} \sim 8 p^{7 / 12} \sum_{a} \sin \frac{a \pi}{12} \quad \text { as } \quad p \rightarrow 0 \tag{47}
\end{equation*}
$$

Table 3. Parameters appearing in the eigenvalue expression (43).

j	$n(a)$	a
$1, \overline{1}$	1	4
2	2	1,5
$3, \overline{3}$	2	3,5
4	3	$2,4,6$

The integers given in Table 3 satisfy the constraint placed upon them by (44). Apart from the entry for $j=4$, these integers are again to be found in [19], and they appear within the table of [14] for E_{6}.

Applying trig identities to the sum in (47) with these sets of integers gives

$$
\begin{align*}
\sum_{a=4} \sin \frac{a \pi}{12} & =\sqrt{3} / 2 \\
\sum_{a=1,5} \sin \frac{a \pi}{12} & =\sqrt{3} / \sqrt{2} \\
\sum_{a=3,5} \sin \frac{a \pi}{12} & =\sqrt{3} \cos \frac{\pi}{12} \tag{48}\\
\sum_{a=2,4,6} \sin \frac{a \pi}{12} & =\sqrt{6} \cos \frac{\pi}{12}
\end{align*}
$$

which, apart from normalisation, correspond to m_{1}, \ldots, m_{4} of (2). Our identification of $a=4$ with m_{1}, gives the amplitude

$$
\begin{equation*}
f \xi_{1}^{2}=\frac{2 \sqrt{6}}{\cos \frac{\pi}{12}} \frac{1}{(4 \sqrt{3})^{2}}=\frac{1}{2 \sqrt{3}(1+\sqrt{3})} \tag{49}
\end{equation*}
$$

as $p \rightarrow 0$, which is in agreement with the thermodynamic Bethe Ansatz result [15].

6 Numerical evidence and discussion

Based on our result (17) for the eigenspectrum of the dilute A_{3} lattice model in regime 2 , and its resulting E_{8} structure, we have proposed analogous formulae for the dilute A_{4} and A_{6} models under the assumption of corresponding E_{7} and E_{6} structures. Such correspondence is to be expected on a number of grounds. For example, at criticality the central charges of the dilute A_{L} models are known from the underlying loop model [1]. In regime 2, $c=7 / 10$ for the A_{4} model and $c=6 / 7$ for the A_{6} model. These are the same as the E_{7} and E_{6} values [13].

A number of considerations have motivated our final results. Our first input was the hyperscaling relation, $f \xi^{2}=$ constant, which constrains the power of the elliptic nome p appearing in the inverse correlation lengths. We found that the stronger inversion relation (16) constrains the set of integers a appearing in the eigenvalue expressions. We took these numbers from the Lie algebraic polynomials tabulated by Kostant [19]. Our results

Table 4. Numerical estimates with increasing system size N of leading eigenvalue ratios in the dilute A_{6} model at $\lambda=2 \pi / 7$. Also shown is the expected exact result (50) in the thermodynamic limit. The corresponding values of a are as given in Table 3.

	N	$\Lambda_{0} / \Lambda_{1}$	$\Lambda_{0} / \Lambda_{2}$	$\Lambda_{0} / \Lambda_{3}$
$p=0.1$	3	6.0279		
	4	6.7882		
	5	6.9281		
	6	6.9474	15.268	
	7	6.9501	15.511	41.05
	∞	6.9505	15.590	42.44
$p=0.3$	3	89.93047		
	4	90.08438		
	5	90.08605	652.6278	
	6	90.08607	652.7399	6434.75
	7	90.08607	652.7442	6436.87
	∞	90.08607	652.7444	6437.08

produce the $E_{6}(2)$ and $E_{7}(3)$ masses in the critical limit $p \rightarrow 0$. However, the configuration of a 's for the heaviest mass does not appear in the Kostant polynomials. We chose that configuration to be consistent with the predicted E_{6} and E_{7} mass spectra, and subsequently noted that it had been observed in the context of scattering theory [14]. Our identification of the a 's associated with the lightest masses also gives the universal amplitudes (49, 38) in agreement with the thermodynamic Bethe Ansatz results based on the E_{6} and E_{7} algebras [15].

We have performed a number of numerical tests on the eigenspectra of the dilute A_{4} and A_{6} models to check our results. Specifically, we have diagonalised the periodic row-transfer matrix for finite lattice sizes. Consider the dilute A_{6} model first. Here $\lambda=2 \pi / 7$. The largest eigenvalue Λ_{0} is 3 -fold degenerate in the thermodynamic limit. Successive numerical estimates of the first few eigenvalue $\operatorname{ratios} \Lambda_{0} / \Lambda_{j}$ at the isotropic point $u=3 \lambda / 2$ are tabulated in Table 4 for the values $p=0.1$ and $p=0.3$. Excellent agreement is seen with the expected result (45), which reduces to

$$
\begin{equation*}
\frac{\Lambda_{0}}{\Lambda_{j}}=\prod_{a}\left[\frac{\vartheta_{4}\left(\frac{a \pi}{24}+\frac{\pi}{4}, p^{7 / 12}\right)}{\vartheta_{4}\left(\frac{a \pi}{24}-\frac{\pi}{4}, p^{7 / 12}\right)}\right]^{2} \tag{50}
\end{equation*}
$$

The dilute A_{4} model at $\lambda=3 \pi / 10$ is more complicated. A detailed numerical study of the Bethe Ansatz equations has revealed all seven masses [21]. However, the eigenvalue spectrum is dependent on the sign of p. In this case, all of the E_{7} masses are observed in the $p<0$ regime (regime 2^{-}). Only a subset is observed for $p>0$ (regime 2^{+}). Our numerical results for the first few leading eigenvalues are shown in Table 5 for $p=-0.3$. The eigenvalues Λ_{1} and Λ_{3} do not appear in the eigenspectrum for $p=0.3$. Clearly there is excellent agreement with our result (34),

Table 5. Numerical estimates with increasing system size N of leading eigenvalue ratios in the dilute A_{4} model at $\lambda=$ $3 \pi / 10$. Also shown is the expected exact result (51) in the thermodynamic limit. The corresponding values of a are as given in Table 2.

	N	$\Lambda_{0} / \Lambda_{1}$	$\Lambda_{0} / \Lambda_{2}$	$\Lambda_{0} / \Lambda_{3}$	$\Lambda_{0} / \Lambda_{4}$
$p=-0.3$	4	116.09490	492.5475		
	5	116.09969	493.2263	8669.13	
	6	116.09973	493.2413	8724.17	11928
	7	116.09973	493.2416	8726.53	12067
	∞	116.09973	493.2416	8726.64	12190

which here simplifies to

$$
\begin{equation*}
\frac{\Lambda_{0}}{\Lambda_{j}}=\prod_{a}\left[\frac{\vartheta_{4}\left(\frac{a \pi}{36}+\frac{\pi}{4}, p^{5 / 9}\right)}{\vartheta_{4}\left(\frac{a \pi}{36}-\frac{\pi}{4}, p^{5 / 9}\right)}\right]^{2} \tag{51}
\end{equation*}
$$

We expect this result to hold in regime 2^{-}for all of the masses, or correspondingly for each set of a 's given in Table 2. Apart from Λ_{1} and Λ_{3}, we have not explored further which of the eigenvalues are absent in regime 2^{+}. We await the publication of reference [21].

In contrast with the dilute A_{4} model, the mass spectrum of the dilute A_{6} model appears to be equivalent in regimes $2^{ \pm}$. Such equivalence holds for the dilute A_{L} models with L odd, where the eigenspectrum is independent of the sign of p. This is a consequence of the off-critical weights breaking the Z_{2} symmetry for L odd. However, for L even this symmetry is not broken. As to why the mass spectrum may be the same for the dilute A_{6} model in regimes $2^{ \pm}$, this remains one of the mysteries of the dilute A_{L} models for L even, which are yet to be investigated.

Finally we note that although the evidence for our conjectured results is convincing, they of course await a formal derivation.

It is a pleasure to thank Uwe Grimm, Bernard Nienhuis, Will Orrick, Ole Warnaar and Yu-kui Zhou for some helpful remarks. This work was undertaken while KAS was a visitor in the Department of Mathematics at The Australian National University. The work of MTB has been supported by the Australian Research Council.

References

1. S.O. Warnaar, B. Nienhuis, K.A. Seaton, Phys. Rev. Lett. 69, 710 (1992); Int. J. Mod. Phys. B 7, 3727 (1993).
2. Ph. Roche, Phys. Lett. B 285, 49 (1992).
3. B. Nienhuis, Int. J. Mod. Phys. B 4, 929 (1990).
4. S.O. Warnaar, B. Nienhuis, J. Phys. A 26, 2301 (1993).
5. S.O. Warnaar, P.A. Pearce, K.A. Seaton, B. Nienhuis, J. Stat. Phys. 74, 469 (1994).
6. M.T. Batchelor, V. Fridkin, Y.K. Zhou, J. Phys. A 29, L61 (1996).
7. A.B. Zamolodchikov, Adv. Stud. Pure Math. 19, 641 (1989).
8. A.B. Zamolodchikov, Int. J. Mod. Phys. A 4, 4235 (1989).
9. V.V. Bazhanov, B. Nienhuis, S.O. Warnaar, Phys. Lett. B 322, 198 (1994).
10. U. Grimm, B. Nienhuis, Phys. Rev. E 55, 5011 (1997).
11. B.M. McCoy, W.P. Orrick, Phys. Lett. A 230, 24 (1997).
12. M.T. Batchelor, K.A. Seaton, Nucl. Phys. B 520, 697 (1998).
13. T.R. Klassen, E. Melzer, Nucl. Phys. B 338, 485 (1990).
14. H.W. Braden, E. Corrigan, P.E. Dorey, R. Sasaki, Nucl. Phys. B 338, 689 (1990).
15. V.A. Fateev, Phys. Lett. B 324, 45 (1994).
16. M.T. Batchelor, K.A. Seaton, J. Phys. A 30, L479 (1997).
17. A. Klümper, J. Zittartz, Z. Phys. B 71, 495 (1988); 75, 371 (1989).
18. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).
19. B. Kostant, Proc. Natl. Acad. Sci. USA 81, 5275 (1984).
20. G. Delfino, G. Mussardo, Nucl. Phys. B 455, 724 (1995).
21. U. Grimm, B. Nienhuis, to be published.

[^0]: * Dedicated to J. Zittartz on the occasion of his 60th birthday
 ${ }^{\text {a }}$ e-mail: murrayb@maths.anu.edu.au

[^1]: ${ }^{1}$ There is another relationship between the E_{7} mass ratios, the trigonometric expression of (36) and integers in the table of [14]. However, the one described here is necessary in the context of the solvable dilute A_{4} model in order to satisfy its inversion relations.

