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Abstract. On the basis of features observed in the exact perturbation approach solution for the eigen-
spectrum of the dilute A3 model, we propose expressions for excitations in the dilute A4 and A6 models.
Principally, we require that these expressions satisfy the appropriate inversion relations. We demonstrate
that they give the expected E7 and E6 mass spectra, and universal amplitudes, and agree with numerical
expressions for the eigenvalues.
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1 Introduction

The dilute AL model is an exactly solvable, restricted
solid-on-solid model defined on the square lattice. At crit-
icality, the model can be constructed [1,2] from the dilute
O(n) loop model [3,4]. Each site of the lattice can take
one of L possible (height) values, subject to the restriction
that neighbouring sites of the lattice either have the same
height, or differ by ± 1. Most importantly, the model can
also be solved away from criticality. The off-critical Boltz-
mann weights of the allowed height configurations of an
elementary face of the lattice are parametrised in terms of
elliptic theta functions [1]. The interpretation of the ellip-
tic nome p differs according to whether L is even or odd. In
particular, for L odd the up-down symmetry of the Boltz-
mann weights is broken away from criticality. For L = 3
the elliptic nome plays the role of magnetic field. More-
over, the dilute A3 model provides, in one of its regimes,
an integrable lattice realisation of the E8 Ising model, be-
ing in the same universality class as the two-dimensional
Ising model in a magnetic field.

The calculation of the various off-critical thermody-
namic properties of the model have verified this corre-
spondence. The singular part of the bulk free energy of
the dilute A3 model in the appropriate regime gives the
magnetic Ising exponent δ = 15 [1], which also follows
from the calculation of the local height probability [5].

The expected Ising magnetic surface exponent δs = −
15

7
follows from the excess surface free energy [6]. Moreover
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the E8 mass spectrum,
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predicted by Zamolodchikov [7,8] for the Ising model in
a magnetic field is seen in the single particle excitation
spectrum [9–12]. Here the masses are normalized such
that m1 = 1. They coincide with the components of the
Perron-Frobenius vector of the Cartan matrix of the Lie
algebra E8.

In this paper we consider off-critical excitations in the
dilute A4 and A6 models, which are expected to be related
to the E7 and E6 scattering theories. The E6 masses are
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(see, e.g., [13–15] and references therein)
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The E7 masses, with m1 = 1, are [13–15]
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Our approach begins in the next two sections by consid-
ering the inversion relations that hold for the off-critical
dilute AL models, how our solution [12] satisfies them in
the case L = 3, and how the E8 structure manifests itself
within the solution. In the subsequent sections we propose
solutions for A4 and A6 and demonstrate the expected E7

and E6 mass spectra. We conclude with some numerical
evidence and discussion.

2 Inversion relations

The eigenvalues of the row transfer matrix of the dilute
AL model, defined on a periodic strip of width N , where
we take N even, are [9]

Λ(u) = ω

[
ϑ1(2λ− u) ϑ1(3λ− u)

ϑ1(2λ) ϑ1(3λ)

]N N∏
j=1

ϑ1(u− uj + λ)

ϑ1(u− uj − λ)

+

[
ϑ1(u) ϑ1(3λ− u)

ϑ1(2λ) ϑ1(3λ)

]N
×

N∏
j=1

ϑ1(u− uj) ϑ1(u− uj − 3λ)

ϑ1(u− uj − λ) ϑ1(u− uj − 2λ)

+
1

ω

[
ϑ1(u) ϑ1(λ− u)

ϑ1(2λ) ϑ1(3λ)

]N N∏
j=1

ϑ1(u− uj − 4λ)

ϑ1(u− uj − 2λ)
, (4)

where the N roots uj are given by the Bethe equations

ω

[
ϑ1(λ− uj)

ϑ1(λ+ uj)

]N
=

−
N∏
k=1

ϑ1(uj − uk − 2λ) ϑ1(uj − uk + λ)

ϑ1(uj − uk + 2λ) ϑ1(uj − uk − λ)
, (5)

with ω = exp( i π`/(L+ 1)) for ` = 1, ..., L. For regime 2,
the regime to be considered, the spectral parameter u lies
in the range 0 < u < 3λ, with λ = πs/r, where s = L+ 2
and r = 4(L+ 1).

The standard elliptic theta functions ϑ1(u) = ϑ1(u, p)
and ϑ4(u) = ϑ4(u, p) of nome p are defined as

ϑ1(u) = 2 p
1
4 sinu

∞∏
n=1

(
1− 2p2n cos 2u+ p4n

) (
1− p2n

)
,

ϑ4(u) =
∞∏
n=1

(
1− 2p2n−1 cos 2u+ p4n−2

) (
1− p2n

)
. (6)

Also of use are the conjugate variables

w = e−2πu/ε and x = e−π
2/rε, (7)

where nome p = e−ε. The relevant conjugate modulus
transformations are

ϑ1(u, p) =
(π
ε

) 1
2
e−(u−π/2)2/εE(w, q2),

ϑ4(u, p) =
(π
ε

) 1
2
e−(u−π/2)2/εE(−w, q2), (8)

where q = e−π
2/ε and

E(z, p) =
∞∏
n=1

(1− pn−1z)(1− pnz−1)(1− pn). (9)

For this model, the partition function per site κ was first
calculated using the inversion relation [1,5]

κ(u)κ(u+ 3λ) =
ϑ1(2λ− u)ϑ1(3λ− u)

ϑ2
1(2λ)ϑ2

1(3λ)

×ϑ1(2λ+ u)ϑ1(3λ+ u). (10)

In this way the bulk free energy per site f = log κ was
found to be

f =
∞∑
k=1

[
(1− wk)(1− x6skw−k)

k(1− x2rk)(1 + x6sk)

× (x4sk + x(2r−6s)k)(1 + x2sk)
]
. (11)

The same result was derived [12,16] from the Bethe
Ansatz solution for the groundstate eigenvalue Λ0(u).

Making use of the Poisson summation formula in the
free energy (11) the leading singularity as p→ 0 in regime
2 is

f ∼ A pr/3s, (12)
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where the amplitude A is given in terms of L by

A = 4
√

3

cos

[
π(L+ 6)

6(L+ 2)

]
sin

[
2π(L+ 1)

3(L+ 2)

] , (13)

and we have taken the isotropic value u = 3λ/2.
Excitations in the eigenspectrum can be considered in

terms of the quantity

rj(u) = lim
N→∞

Λj(u)

Λ0(u)
· (14)

The inversion relation (10) is simply

rj(u) rj(u+ 3λ) = 1, (15)

but there is a further relation to be satisfied [12],

rj(u) rj(u+ 2λ) = rj(u+ λ). (16)

Our approach here is not to solve the inversion relations
directly, as was done, e.g., by Klümper and Zittartz for the
excitation spectra of the eight-vertex model [17]. Rather,
in the light of our results for the excitations of the di-
lute A3 model, we use the above inversion relations to
give constraints on the Lie algebraic properties of a con-
jectured solution. We then test our results as best we can
by numerically diagonalising the transfer matrix, and by
comparison with results for E7 and E6 obtained by other
methods.

3 The dilute A3 model and the E8 mass
spectrum

We now summarise our results [12] for the dilute A3

model, obtained by the exact perturbation approach [18].
The leading excitations in a given band of eigenvalues can
be written in the compact form

rj(w) = wn(a)
∏
a

E(−xa/w)E(−x30−a/w)

E(−xaw)E(−x30−aw)
, (17)

where we have suppressed the nome x60 and the numbers
a and n(a) are given in Table 1. The E8 numbers a have
been discussed by McCoy and Orrick for the related
Hamiltonian [11]. They appear, e.g., in E8 scattering
theory [14] and in E8 Lie algebraic polynomials [19].
The number n(a) denotes the relevant band of eigenvalues.

Note that within a band of eigenvalues there may be
more than one class of excitation. For example, in the
leading band of eigenvalues there are two, which arise
from a 2-string and a 4-string structure in the Bethe roots
[9,10]. The expression (17) is the leading excitation for
each class of eigenvalue. The last excitation within a class
is also given by (17), but with positive argument in the
elliptic functions.

Table 1. Parameters appearing in the eigenvalue expres-
sion (17).

j n(a) a

1 2 1, 11

2 2 7, 13

3 3 2, 10, 12

4 3 6, 10, 14

5 4 3, 9, 11, 13

6 4 6, 8, 12, 14

7 5 4, 8, 10, 12, 14

8 6 5, 7, 9, 11, 13, 15

In the original variables (17) reads

rj(u) =
∏
a
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(
aπ
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)
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(
(30− a)π

60
−
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+
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)
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+

8u

15

) (18)

with nome p8/15.
The various correlation lengths follow as

ξ−1
j = − log rj(u), (19)

where we take the relevant leading eigenvalue at the
isotropic point u = 3λ/2, which for L = 3 is u = 15π/32.

The fundamental correlation lengths can thus be writ-
ten
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Expanding this expression in powers of p gives

mj ∼ 8 p8/15
∑
a

sin
aπ

30
as p→ 0 . (21)

This is the formula obtained by McCoy and Orrick [11]
for the Hamiltonian, from which the E8 masses in (1) are
recovered by virtue of trig identities.

In particular,

ξ−1
1 ∼ 8 p8/15

(
sin

π

30
+ sin

11π

30

)
= 16 sin

π

5
cos

π

6
p8/15.

(22)

We are now able to consider the universal magnetic
Ising amplitude [16]. From (12, 13),

f ∼ 4
√

3
sin

π

5

cos
π

30

p16/15 as p→ 0 . (23)



722 The European Physical Journal B

Combining this with (22) gives

f ξ2
1 =

1

16
√

3 sin
π

5
cos

π

30

= 0.061 728 589 . . . (24)

as p → 0. This is the result for the universal magnetic
Ising amplitude obtained earlier by thermodynamic Bethe
Ansatz calculations based on the E8 scattering theory [15]
(see also Ref. [20] in the context of the form-factor boot-
strap approach). Here it has been obtained from the lattice
model.

From the outset, no assumptions were made on the E8

structure in the dilute A3 model, both in our own calcu-
lations, and in the thermodynamic Bethe Ansatz calcula-
tions [9,11]. We now highlight a few of the E8 features as
a guide to our considerations of E7 and E6.

First, each a value occurs in (17) together with its
complement in (30), the Coxeter number of E8, so that
no integer greater than 15 appears in the lists in Table 1.

Second, the inversion relation

rj(w) rj(x
30w) = 1, (25)

is satisfied by an expression of the form (17) for any a
value. However, the stronger relation

rj(w) rj(x
20w) = rj(x

10w), (26)

is satisfied if, within the set of integers, one finds not only
a, where a = 1, ..., 9, but also a + 10, or equivalently its
complement in 30, 20− a, by virtue of the properties

E(z, p) = E(p/z, p) = −zE(z−1, p). (27)

The integer a = 10 may appear alone, because the factor it
contributes to rj(w) satisfies (26) by itself. From Table 1,
the sets of integers found by the perturbative approach
[12] all have these features.

Finally, we observe that the nome p cancels in (24)
because of the relationship between the power of p occur-
ring in f and in ξ1. Indeed, this combination defines the
hyperscaling relation between the corresponding critical
exponents.

4 The dilute A4 model and the E7 mass
spectrum

We now use our observations for E8 to arrive at a conjec-
ture (equivalent to (17)) for the excitations of E7.

The free energy expression is, from (12, 13),

f ∼
2
√

3

sin
5π

18

p10/9 as p→ 0 . (28)

In order to obtain a finite expression from f ξ2
1 , we thus

expect

ξ−1
1 ∼ p5/9 as p→ 0 . (29)

This power of the nome must appear in the expression
equivalent to (18) for E7, and is thus related to the one we
must propose for rj(w) by the conjugate modulus trans-
formation (8), namely

e−5ε/9 → e−18π2/5ε = x72, (30)

where for L = 4, x = e−π
2/20ε.

The inversion relation in conjugate modulus form is

rj(w) rj(x
36w) = 1. (31)

However, the Coxeter number for E7 is 18, so that we
expect to select our integers from 1, ..., 9. We thus propose
that the excitations for E7 take the form

rj(w) = wn(a)
∏
a

E(−x2a/w)E(−x36−2a/w)

E(−x2aw)E(−x36−2aw)
(32)

with nome x72. The additional relation which serves to
constrain the possible a values is

rj(w) rj(x
24w) = rj(x

12w). (33)

This condition is satisfied if, within a set of possible inte-
gers, a appears together with a+ 6 or equivalently 12−a,
apart from a = 6 whose contribution satisfies (33) by it-
self.

Written in terms of the original variables the expres-
sion (32) is

rj(u) =
∏
a

ϑ4

(
aπ

36
−

5u

9

)
ϑ4

(
(18− a)π

36
−

5u

9

)
ϑ4

(
aπ

36
+

5u

9

)
ϑ4

(
(18− a)π

36
+

5u

9

) (34)

with nome p5/9. Taking the isotropic value u = 9π/20 we
obtain

mj = ξ−1
j = 2

∑
a

log
ϑ4

(aπ
36

+
π

4

)
ϑ4

(aπ
36
−
π

4

) (35)

for the masses, and so

mj ∼ 8 p5/9
∑
a

sin
aπ

18
as p→ 0 . (36)

We now turn to the sets of integers associated with E7 in
the context of Lie algebraic polynomials [19] which form
the first six rows of the third column of Table 2. Clearly
these integers satisfy the constraints described above as
being placed upon them by (33). Together with the last
row, they are also to be found within the table given for
E7 scattering in [14].



M.T. Batchelor and K.A. Seaton: Excitations in the dilute AL model 723

Table 2. Parameters appearing in the eigenvalue expres-
sion (32).

j n(a) a

1 1 6

2 2 1, 7

3 2 4, 8

4 2 5, 7

5 3 2, 6, 8

6 3 4, 6, 8

7 4 3, 5, 7, 9

Applying trig identities to the sum in (36) with these
sets of integers gives

∑
a=6

sin
aπ

18
=
√

3/2,

∑
a=1,7

sin
aπ

18
=
√

3 cos
5π

18
,

∑
a=4,8

sin
aπ

18
=
√

3 cos
π

9
,

∑
a=5,7

sin
aπ

18
=
√

3 cos
π

18
, (37)

∑
a=2,6,8

sin
aπ

18
= 2
√

3 cos
π

18
cos

5π

18
,

∑
a=4,6,8

sin
aπ

18
= 2
√

3 cos
π

9
cos

2π

9
,

∑
a=3,5,7,9

sin
aπ

18
= 2
√

3 cos
π

18
cos

π

9
,

which, apart from normalisation, correspond to
m1, ..., m7 of (3)1. As another piece of evidence for
our identification of a = 6 with m1, from which the others
follow, we consider the amplitude

f ξ2
1 =

2
√

3

sin
5π

18

1

(8 sin
π

3
)2

=
1

8
√

3 cos
2π

9

(38)

as p→ 0. This is in agreement with theE7 thermodynamic
Bethe Ansatz result [15].

1 There is another relationship between the E7 mass ratios,
the trigonometric expression of (36) and integers in the table
of [14]. However, the one described here is necessary in the
context of the solvable dilute A4 model in order to satisfy its
inversion relations.

5 The dilute A6 model and the E6 mass
spectrum

The free energy expression for the dilute A6 model is,
again from (12, 13),

f ∼
2
√

6

cos
π

12

p7/6 as p→ 0 , (39)

and so we expect

ξ−1
1 ∼ p7/12 as p→ 0 . (40)

This power of the nome must appear in the expression
equivalent to (18) for E6, and thus prescribes the nome
of the expression we propose for rj(w), because in the
conjugate modulus transformation (8),

e−7ε/12 → e−24π2/7ε = x96, (41)

where in the case L = 6, x = e−π
2/28ε. The inversion

relation in conjugate modulus form is

rj(w) rj(x
48w) = 1. (42)

Finally, the Coxeter number for E6 is 12, so that we expect
to select our integers from 1, ..., 6. We thus propose that
the excitations for E6 take the form

rj(w) = wn(a)
∏
a

E(−x4a/w)E(−x48−4a/w)

E(−x4aw)E(−x48−4aw)
(43)

with nome x96.
The additional relation which serves to constrain the

possible a values is

rj(w) rj(x
32w) = rj(x

16w). (44)

Thus within any set of possible integers, a must appear
together with a + 4 or equivalently 8 − a, apart from
a = 4 which satisfies (44) by itself. Written in terms of
the original variables the expression (43) is

rj(u) =
∏
a

ϑ4

(
aπ

24
−

7u

12

)
ϑ4

(
(12− a)π

24
−

7u

12

)
ϑ4

(
aπ

24
+

7u

12

)
ϑ4

(
(12− a)π

24
+

7u

12

) (45)

with nome p7/12. Taking the isotropic value u = 3π/7 we
obtain

mj = ξ−1
j = 2

∑
a

log
ϑ4

(aπ
24

+
π

4

)
ϑ4

(aπ
24
−
π

4

) (46)

for the masses. Thus

mj ∼ 8 p7/12
∑
a

sin
aπ

12
as p→ 0 . (47)
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Table 3. Parameters appearing in the eigenvalue expres-
sion (43).

j n(a) a

1 ,1̄ 1 4

2 2 1, 5

3, 3̄ 2 3, 5

4 3 2, 4, 6

The integers given in Table 3 satisfy the constraint placed
upon them by (44). Apart from the entry for j = 4, these
integers are again to be found in [19], and they appear
within the table of [14] for E6.

Applying trig identities to the sum in (47) with these
sets of integers gives∑

a=4

sin
aπ

12
=
√

3/2,∑
a=1,5

sin
aπ

12
=
√

3/
√

2,

∑
a=3,5

sin
aπ

12
=
√

3 cos
π

12
, (48)

∑
a=2,4,6

sin
aπ

12
=
√

6 cos
π

12
,

which, apart from normalisation, correspond to
m1, . . . ,m4 of (2). Our identification of a = 4 with
m1, gives the amplitude

f ξ2
1 =

2
√

6

cos
π

12

1

(4
√

3)2
=

1

2
√

3(1 +
√

3)
(49)

as p→ 0, which is in agreement with the thermodynamic
Bethe Ansatz result [15].

6 Numerical evidence and discussion

Based on our result (17) for the eigenspectrum of the di-
lute A3 lattice model in regime 2, and its resulting E8

structure, we have proposed analogous formulae for the
dilute A4 and A6 models under the assumption of corre-
sponding E7 and E6 structures. Such correspondence is
to be expected on a number of grounds. For example, at
criticality the central charges of the dilute AL models are
known from the underlying loop model [1]. In regime 2,
c = 7/10 for the A4 model and c = 6/7 for the A6 model.
These are the same as the E7 and E6 values [13].

A number of considerations have motivated our fi-
nal results. Our first input was the hyperscaling relation,
fξ2 = constant, which constrains the power of the ellip-
tic nome p appearing in the inverse correlation lengths.
We found that the stronger inversion relation (16) con-
strains the set of integers a appearing in the eigenvalue
expressions. We took these numbers from the Lie alge-
braic polynomials tabulated by Kostant [19]. Our results

Table 4. Numerical estimates with increasing system size N of
leading eigenvalue ratios in the dilute A6 model at λ = 2π/7.
Also shown is the expected exact result (50) in the thermo-
dynamic limit. The corresponding values of a are as given in
Table 3.

N Λ0/Λ1 Λ0/Λ2 Λ0/Λ3

p = 0.1 3 6.0279

4 6.7882

5 6.9281

6 6.9474 15.268

7 6.9501 15.511 41.05

∞ 6.9505 15.590 42.44

p = 0.3 3 89.93047

4 90.08438

5 90.08605 652.6278

6 90.08607 652.7399 6434.75

7 90.08607 652.7442 6436.87

∞ 90.08607 652.7444 6437.08

produce the E6 (2) and E7 (3) masses in the critical limit
p → 0. However, the configuration of a’s for the heavi-
est mass does not appear in the Kostant polynomials. We
chose that configuration to be consistent with the pre-
dicted E6 and E7 mass spectra, and subsequently noted
that it had been observed in the context of scattering the-
ory [14]. Our identification of the a’s associated with the
lightest masses also gives the universal amplitudes (49,
38) in agreement with the thermodynamic Bethe Ansatz
results based on the E6 and E7 algebras [15].

We have performed a number of numerical tests on
the eigenspectra of the dilute A4 and A6 models to check
our results. Specifically, we have diagonalised the periodic
row-transfer matrix for finite lattice sizes. Consider the
dilute A6 model first. Here λ = 2π/7. The largest eigen-
value Λ0 is 3-fold degenerate in the thermodynamic limit.
Successive numerical estimates of the first few eigenvalue
ratios Λ0/Λj at the isotropic point u = 3λ/2 are tabulated
in Table 4 for the values p = 0.1 and p = 0.3. Excellent
agreement is seen with the expected result (45), which
reduces to

Λ0

Λj
=
∏
a

ϑ4

(aπ
24

+
π

4
, p7/12

)
ϑ4

(aπ
24
−
π

4
, p7/12

)
2

. (50)

The dilute A4 model at λ = 3π/10 is more compli-
cated. A detailed numerical study of the Bethe Ansatz
equations has revealed all seven masses [21]. However, the
eigenvalue spectrum is dependent on the sign of p. In this
case, all of the E7 masses are observed in the p < 0 regime
(regime 2−). Only a subset is observed for p > 0 (regime
2+). Our numerical results for the first few leading eigen-
values are shown in Table 5 for p = −0.3. The eigenvalues
Λ1 and Λ3 do not appear in the eigenspectrum for p = 0.3.
Clearly there is excellent agreement with our result (34),
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Table 5. Numerical estimates with increasing system size N
of leading eigenvalue ratios in the dilute A4 model at λ =
3π/10. Also shown is the expected exact result (51) in the
thermodynamic limit. The corresponding values of a are as
given in Table 2.

N Λ0/Λ1 Λ0/Λ2 Λ0/Λ3 Λ0/Λ4

p = −0.3 4 116.09490 492.5475

5 116.09969 493.2263 8669.13

6 116.09973 493.2413 8724.17 11928

7 116.09973 493.2416 8726.53 12067

∞ 116.09973 493.2416 8726.64 12190

which here simplifies to

Λ0

Λj
=
∏
a

ϑ4

(aπ
36

+
π

4
, p5/9

)
ϑ4

(aπ
36
−
π

4
, p5/9

)
2

. (51)

We expect this result to hold in regime 2− for all of the
masses, or correspondingly for each set of a’s given in Ta-
ble 2. Apart from Λ1 and Λ3, we have not explored further
which of the eigenvalues are absent in regime 2+. We await
the publication of reference [21].

In contrast with the dilute A4 model, the mass spec-
trum of the dilute A6 model appears to be equivalent in
regimes 2±. Such equivalence holds for the dilute AL mod-
els with L odd, where the eigenspectrum is independent
of the sign of p. This is a consequence of the off-critical
weights breaking the Z2 symmetry for L odd. However, for
L even this symmetry is not broken. As to why the mass
spectrum may be the same for the dilute A6 model in
regimes 2±, this remains one of the mysteries of the dilute
AL models for L even, which are yet to be investigated.

Finally we note that although the evidence for our con-
jectured results is convincing, they of course await a for-
mal derivation.
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tralian Research Council.
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